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I T}_]METHOD OF ZONES FOR THE CAIEUIATION

OF TEMPERAtUrE DISTRIBUTION

:' 1 S_Y -
1

"_:'I The method of zones is an improved method for obtaining

:_ approximate solutions to certain partial differential equation_. Its

i;i! application to heat transfer problems is discussed in detail. Within

i a zone the temperature is assumed to vary parabolical_y with the space

_'i _
coordinatest and mean temperatures throughout the volume and over the

_ boundaries are calculated. The higher order of approximation of the method
permits a complicated system to be subdivided into fewer parts than is

:' necessary when conventional methods are used.

I The heat flow equation is integrated over the volume of the zone

; 1 to give e_ instantaneous heat balance equation which involve_ the fluxes
_ over the boun.d_ries of the zone and the rate of change of the mean temper-

I ature of the zone. Approximate formulas, which are based on the parabolic

,!'i assumption, a_e derived expressing the fluxes in terms of the mean temper-

• _ _tures of the zone and its botuzdaries. These formulas are worked out for

_I _ones of various shapes. The boundary conditions are also integrated to
obtain equations for relating the temperatures in zones that are Joined

i

_ together.

,|
1
1
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i The instantaneous heat balance equations are integrated numeri-

cally with respect to time by means of a general linear two-point integra-

l tion formulo,involving an integration parameter. Rules for choosing this

parameter to insure stability and accuracy are given. A rule is also

i given for selecting the time increment.

I Three simple,examples are given to illustrate the application

l and accuracy of the method of zones. A number of criteria which enable

zone sizes to be chosen properly in practical applications are developed.

il These criteria are derived by c_nparing calculations made by the method

i of zones with exact results in simple cases.

J

I The modified Gauss-Seidel procedure for solvir_ the difference

equations at each time step is briefly discussedl and experience with the

I convergence of this procedure in the present connection is reviewed.

i Finally_checking procedures, based'on the principles of reci-

i procity and the conservation of energy_ are introduced. These provide an

initial check on the cc _sistency of the input data and a running check on

• i the solution of the probl.e.m.

I

l '
,' 'I

I
i
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INr/_0DUCTION

i,I
"1

_ I The method,of zones was developed for calculating the temperature
m

distributions in the components of complicated artificial satellites.

il
Conventional numerical methods (1'2) for determining the temper-

I ature distribution in a component_ such as a rod or a plate, involve the

i establishment of a suitably fine mesh in the object which defines points
at which temperatures a_e to be evaluated. The calculations are then made

]

I by replacing the differential equation by a set of difference equations.
i

! This is equivalent to making the assumption that the temperature distrlbu-

II ,
I

tlon between points of the mesh is linear in the space coordinates.

I in the zone method, on the other hand_ we divide the component

• I into zones of suitable size and _.ssumethat the temperature within the

zone varies para1_o!ically ,ith the space coordinates. Fur_hermor_ we
' 'r

i : evaluate mean teJ_perat',resaveraged over the volume and over the boundaries
i

of the zone instead of temperatures at particular mesh points. This method

!,l
lends itself very naturally to the solution of boundary value problems and

iI the higher o_ approximation used permits the size of our zones to be
m

larger than the mesh size used in conventional methods. We will present
]

rules to help to determine the subdivision of the system into zo_lesof

appropriate size. The use of larger zones greatly decreases the labor of

calculating thermal conduetances and view areas for radiation, and also

decreases the magnitude of the machine calculations.

1
i_ _vthUr _l.lUt|eJne.
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i We will show later that the use of mean temperatures leads to

greater accuracy in problems involving radiation and in transient problems.

l The use of mean temperatures and the parabolic a_sumption permit the ex-i

plicit calculation of fluxes over boundaries which enc.blesthe interaction

i between zones 4o be accurately accounte_ for.

!
- The method of zones is not restricted to problems in heat flow

I alone_ but could be used in obtaining approximate solutions to many other

partial differential equationst such as the biharmonic equation of the

i theory of elasticity.

!
I IN_US HEAT_BALANOE

I The heat flow equation in a zone is

I where K is the thermal conductivity, watts cm"I (deg K)"I which we
assume to be constant.

I T is the temperature, de_ K.

L "J3

p is the po_er input per unit volume, watts cm .

i _ is the heat capacity per unit volume_ _oule cm"3 (deg K) "I.

J t is the timet seconds.
In order to obtain solutions of Equation 1 suitable bounda_ _ conditions

I and an initial temperature distribution must be prescribed. In _neral

I
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ii the boundary condition is given as a rel_,tionBhip between the temperature

and flux at each point of the boundary

_I f(T3K _) = 0 (2)
i

I whe_e n represents the outward _.irectednormal and f ._s an arbitrary fune-

I tion. For example, in the case of a free boundary interchanging radiation

with an environment at temperature, To, the boundary condi',,ionbecomes

_ 4 o (3)K _ 4- _.oT4 - _cT°

I
whe_ _ is the emissivity of the surface and _ is the ,Stefan-Boltzmann

I const_.ut_watts cm"2 (deg K)"4. On the other hand,_when two bodies are

in contact, thej share the common boundary conditions

!
q -K_-K' ST'N:T= 0 (4)

I _ -_,= o (5.)

I wher_ the prime refers to the second body and q is the heat generated at

the interface, watts cm_2. Equations 4 and 5 merely require continuity of

I the temperature and the heat flux over the boundary.

I
in order to obtain the overall heat balance for a zonep we inte-

l grate Equation i over the volume_ V, of the zone. On applying Gauns'

theorem to first term of Equation_ and interchan_i_ _he order o__aifferen-

! _i_tion and integration in the last term_ we find

4
2.bur_.ILUtl,,:h¢.
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where "'o is the surface of the zone. It wikl be noticed that

I_ dv=_ (7)

where Tm in the mean temperature over the volume. Since VTm does not vary

with the space coordinates, the partial derivative with respect to time in

• i Equation I becomes a total derivative. Also

. V

|
where P is th_ total power dissipated in the volume, watts. If we divide

I the boundar# of the zone into a number of faces SI, $2_ S3 ..., the firat

. term of Equation 6 is seen to be

i . KjJ_ _ =%+%+%+. (9>
/" I

_here Q1 = -Kj_;tdS1 etc. (lO)I
W

_ I Thus QI' _' Q3' "''' are the total outward fluxes crossi_ ISi_ 82, $3_ ...,

.L w in watts. On substituting the expressions (7)_ (8), and (9) into Equa-
• tlon 6 we fina

|
... _ = o (l l)

T&e _e_t b_lance equation (ll) is one of the basic equations of the method

| of :.;cuieOoThis equation is exact, and it should be _ointed 0u_ that if,

1964019637-010
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for example, the center temperature of the zone were use_Li_ place of the

_I mean temperature_ an error wouldt in general t be incu_re_L

l
I Next we obtain the heat balance for a particular face of a zone

i"j by integrating the boundary conditions over a surfaceI say SI_ For example,

_ !I Equation 3 _-Y be integrated to give

_i _ f T4 ale°T°4: _Q1 + _ dsI - --o. (_)

iI SI

iI On account of the non-linear character of Equation 12_ we make the
i

substitution

_--_i+e i,_

where TI is the mean temperature of SI and e is .thedeviation therefrom.

il Then the integral in (12) becomes

'| _ _l=Sl_l_ +_ ( ) C_l+'" (_3)
SI SI

The term in 8 is exactly zero because of the definition of TI.

i_l as the mean temperature of SI

The higher order terms in ,Equation 13 can be neglecte_ if

_6_i e2 (_.5,

1964019637-011
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I In the method of zones, this term is neglected so that Equation 12 becomes

I _ QI + SlE°TI4- SlC_o4 = 0 (16)

15 size.
i and Inequality provides one criterion for choosing the zone

I If the face is rectangular and 8 varies lineerly over Sl, then

6 e 2 < /emax_ 2

I _ ;(_-/)a_.-,- • (17)

I So that, for example, if emax is 20% of TI in degrees Kelvin, a 4% error

i in the radiation flux will be made by neglecting the term in e2.

I Another example of the integration of zone boundary conditions

I is obtained from Equations 4andS. These become

I Q+QI+ Qi= o (18)

I , _z - _J.: o (19)

i _he_e Q is the total heat generated over SI
TI is the mean temperature over el, as before

I QI is the ,total heat flux crossing SI out of the first body,
' as defined in Equation I0

_,_ ' Q_ is the total heat flux crossing SI out of the .secondbody.

1964019637-012
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I DIFFERENCE EQUATIONS (SPACE)

I In order to convert Equations ii, 16, 18, and 19 into difference

e_uations in the space coordinates, it is necessary to express QI' _' Q3'

I etc., in terms of the mean temperatures Tin,TI, T2, TS, etc. To do this

we assume that the temperature can be instantaneously approximated by a

I particular function of the space coordinates.

!
Rectilinear Solid

!
In the case of a rectilinear solid of sides a, b, and c as

l illustrated in Figure i, we assume +.hat

" I 2 2 2T(x,y,z,t) = Z Z Z aijk(t) xiyJzk. (20)i=oj=ok=O

I It will be noted that T(x,y,z,t) is a quadratic function of each of the

I space variables considered separately and that the coefficients are, in

general, functions of the time. Thus, Equation 20 can be written in the

I equivalent forms

_(x,y,z,t)_o_y,z,t)+ Xfl(y,z,t)+ x2f2(y,z,t) (21)

| _(_,y;,,t):,o(_,z,t) +_(x,z,t) (2_)

L_

i
!
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I As shown in Figure i, Q1 and _ are the total outward fluxes

leaving the surfacesnormal to the x-axis. The temperaturesTl and T2 are

I the mean temperaturesof these faces, and Tm is the mean over the whole

vol_=e._ee_resslon,forQl_0__ Inte_sof%,%,an_% o_,o,
I be found by the use of Equation el. First we calculate_ and _ from

i _quation i0 b c

I where I __o c
F1(t)=_ fl(y,_.,t)_az (zS)

!
b c

!
where -

c

| --
Nextwe compute TI and T2 from Equation 14

, Jooi

|-
where

, /o/o_o(t) " be! fo(y,z,t.) _az . (eg)

! aft o
| "_"¢_,1o,lo=("Y'=")_"=='o(')* _z(_)+"_'_(') <,_o)
rJ

i _,¢k=__.lad,J,e.

1964019637-014
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i

Z1
!
I FIGURE I. RECTILINEAR SOLID: MEAN TEMPERATURESAND BOUNDARY FLUX_8.

I
I

|
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I Finally we find Tm from Equation 7

1 _'_ = _-'_'l . _(x,y,_,t) axo_z = Fo(t) + 2_-Fl(t) _2(_) (al)

,!
He now use the expressions for TI# T_# and Tm to eliminate the

I functions FI and F2 from Equations 24 and 26 to find

QI= Kb___a(% " 4_i " 2_2) (_)

m _ (6_._. 2_z> (33>: a Ill

m Similar equations can be written down for the total heat fluxes crossing

m the two oth.erpairs of faces of the rectilinear solid. These simple ex-

pressions for the fluxes can now be substitute_ into the basic heat

I balance Equation ii to yield an ordinary differential equation in the

mean temperatures.

!

d%
i -P+opabcaT = o , (S_)

l where TS# T4# TS, and T6 are the average temperatures over the other faces.

The e_ressions for _ can also be substituted into the boundary conditions#

! such as those given in Equations 16 and 18, If, for example, face i of the

rectilinear solid is conductively Joined to another rectilinear _olid, the

I boundary condition becomes

!
!

..... • ,, _[.Im¢ _l._Ittl,,_I.¢.

1964019637-016
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,_ KbCa(6_m" 4Tl"2'ee)+ a_ - " =

,I

Equations of this type will be referred to as Joining equations.

Suppose also that face 2 is exposed to sunlight at normal

/ i I
incidence. Then the boundary conditionbecomes

'i

t
Kb__xc(6_-4T_._-2_l)-bo_o_2_+boO_=0 (36)

i1 -2
, where _ is the solar absorptivityand s is the solar constant,watts cm ,
J

I'I Four other analogous boundary equations can be written dowel for the four

i remaining faees o The six boundary equations, together with the zone heat

I balance Equation 34, make up the seven equations needed to determine the

"_ i', seven unknown t_,,,._-_aturesassociatedwith the zone.

1

i: Thin RectangularPlate

d

1 We may now specializethe general case of a rectilinearsolid

to the case of a thin rectangular plate. Suppose that the dimension ci't

!,i
becomes small enough so that the temperature gradient in the z-direction

_I can be neglected. Then the face temperaturesT5 and T6 become nearly

',, equal to Tm and the quantity

.4, Kab

T (12Tin" 6T5 " 6T6)

approachesindeterminacyas c tends to zero. This term must _nereforebe

|
I"

1964019637-017
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I replaced by its limiting value as determined by the boundary coi_ditions.

If the surfaces of the plate are emitting and receiving radiation, the zone

I heat balance Equation 34 becomes

I Eac (12T - 6T3 - 6T4) + 2abcaTm4Kb_ao(12_-6_l -6_2)+ -_- ma m

| " P5 " P6 " P + _abc _= 0 (37)

I where P5 and P6 are the powers absorbed by the faces of the plate. In

i this case boundary conditions need only be written for faces i, 2, 3, and
4 since T5 and T6 have been eliminated.

|
Rod

!
Finally, Equation 37 may be specialized to the case bf a rod.

I In this case only the end temperatures and the mean temperature need to

I be considered and the heat balance equation becomes

I KA_ (12Tin. 6T1. 6T2) + p_OTm_, p + QoA_ _-_= 0 I (38)

" I where A is the cross sectional area of the rod

is the length of the rod

i p is the perimeter of the rod.

|
| ,,

!
!

1964019637-018
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[_ We consider next the annuS2r cylinder shown in Figure 2. Wo

f_rst restrict the discussion to the case in which there is no azimuthal

I temperature gradient. In order to obtain the zone formulas for the four

i outward heat fluxes crossing the faces, we assume that the temperature
can be represented sufficiently accurately by

I T(r,z) = (A + Bz + Cz2)r2 + (D + Ez + Fz2)r + G + Hz + Jz2 (39)

J where the coefficients A, B_ C, etc._ are functions of time.

I By methods similar to those employed in analyzing the reeti-

I linear soli_ we find that

Qi--_ (,S_- b + _ " b +----_%) (40)

2_b (6_m _b+3a b+ 3a_ b + a T2 b + a TI) (41)

I Q4 = K_be " a2) (6% - 4T4 - 2TS) (43)

where QI is the flux leaving the inner face

I _ is the flux leaving the outer face

I QS is th_ flux leaving the upper end
Q4 is the flux leaving the lower end

I a is the inner radius

b is the outer radius

I _ is the height.

_vtllUr_I._IIII,._.C.

1964019637-019
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i
These expressions are to be substituted into the zone heat balance

I Equation ii and the boundary conditions in the same manner as before. If

r! the ratio a/b approaches unity, the eoefficionts of the temperatures in
Equations 40 and 41 ap'groe,ch the values 6, -4, -2 as they should.

?
'i r|
-_I Iu case the inner radius is zero, the coefficients Dt E, and F

in Equation 39 must 'be zero for the temperature to be regular a_ the origin°

• I In this case Q1 vanishes an_ we obtain the express_,on

l

_eetor of Annular Cylinder
%,

"2

4

The sector of an armul_r cylinder is illustrated in _Jgure a
!.

,| i The usual correspondence between the face ntunbers shown and the subm_.i_ta

will be employed in the dlscu_Ion that follows. We will.now consider

geadients in the r_ _9,and z _irection_ and _esume that the temperature

• )_ _lls_rlbutionisi

T(r,O,g_t) ,_A_+ Ba"eosO + C_"sln_.+ Dr_"cos2O + Er_ (45) "

where the eoefflelent_ A_ B_ C, ete._ _re f_etlons of t and quadratic

functlon_ of z° Inelus_,onof '_k_rtherite_'_in Equation _5, such ,e a

,_ term in r_ _n28, lead_ to !neonsi_ten_es _en the flvxe_ % a_d % a_e
ea!culated.

1964019637-021
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J On account of the cylindrical coordinates, a weighted average

il has I;0be taken in calculating the mean temperatures T5 and T6. For

_,j example,

I Unless this definition of averaging is used, the average face temperattu'es

T_ auldTs will not approach T as @ tends to zero.

I _ o m

B The calculation of % and % is straightfox_rd but lengthy so
R

we merely quote the results here

I where

,, _ = "b'-':-a" si_" : ¢ cos@ b2 + a2 _:,,

"_--_) (501_i_ "'b2 + ab+ a

@ sin@ b2 -

:-| 7--sin,: i oos@(_+-F:'_2) (5_)

t
It will be noted that (_and 7 tend to infinity as ¢ tends to the root of

¢ = tan¢

which is slightly less than . Therefore a sector including an angle

W

,_ much more than _ should be subdivided azimuthally into more than one zone.

,_rthur_._tttie,_.c.

"_ _ ' ' ',, ' '_'"' _' ' " _'_ . ' ""' _,i; ' . ," , ' '_' _' ',

1964019637-023
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I The fluxes leavingthe 0_her faces are given by formulas
essentiallythe same as those obtained for the completeannular cylinder.

_K_a (% _T1 __2 ) (52)QI=_I-E " b+a " b+a

| Q _ _Z_b (6_ 5b+ 3_ _ (53)_-b -a' m" b +a T2 "b + a TI)

(:Kb - a
e_: (% - _ - 2_S) (5_)

m
In case the inner radius is zeros as when a circular zone is subdivided

" I azimuthallMsthen the coefficientsin Equation 52 are zero an_.T1 is inde-

terminate. In order to obtain an equation for TI, the r_gularitycondition

at the origin is invoked. This leads to the conditionthat

\

II ) m"
I where the summationis taken over the subdivisionsof the circula_ zone.

|
m DIFFERENO_EQUATIONS (TIME)

I So fa_.we have integratedEquation i with respect to the space

i variables in order to obtain equations of the types (36) and (37) which
are _ifferenceequationsin the sp_ce coordinatesandmaybe ordinary dil-

l ferentialequations in time. _he_e equationshave "_hegeneral form

l

I _vlhur_._Utl.,)._.
, _, "\ _, _ _' _j ,JL / _ _ \\_ ,'

1964019637-024
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I| i
_ Tj + E _ Tj4 - Pi(t) + Mi _= 0 (57)

!I J Cij J Aij •

where Tj is a mean temperature, deg K
Cij is a weighted thermalconductance, watts (deg K)"l

Aij is a view area, cm2

Pi(t) is a power, watts

R Mi is a thermal mass; joules (deg K)"I

i It is to be noted that Equation 57 typifies both joining or

I boundary equations and zone heat balance equations, in Joining equations,

the thermal mass is usually zero. We have discussed in detail the calcu-

I l_tion o£'the weighted conductances Cij. The view areas Aij may be obtained

i by standard means.(i)

i I We may now integrate Equation 57 with respect to time from t to

i I t + h: where h is a small increment in time.

We find

_ _t+h _,t+h p+h "

,i Ln order to obtain approximate expressions for the integral_ of Tj and

I we use the general linear two-point integration formula:

• -t+h#1

Ct

j,
J .,

1964019637-025
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i

where f is a function of the time a_d _ is any number lying between zero

i and one. The choice of the quantity (_ which we call the integration

l parameter, influences the accuracy and stability of the numerical solution
of the set of difference equations that has been derived.

i Equation 58 becomes

if+h j(t
"_I "_t ) dt + M i(t + h) - Ti(t = O° (60)

i

i Equation 60 is one of a set of non-linear simultaneous difference equations.

i This set of equations can be solved for Ti(t + h) when the values Ti(t) are
given.

!
In order to investigate the factors which determine the optimum

I value of the integration parameter 5, we will compare solutions of Equ_

i tion 60 with solutions of Equation 57. In order to present this analysis
as simply as possible, we investigate the conductive cooling of a lumped

i thezwal mass M with an initial temperature TO connected by a conductance

I C to a sink at zero degrees. If the temperature is T at time t, Equation57 becomes

I CT+ M_%T= 0 .(61)

I The exact solution is
i

T = TO • "t/i (62)

I ,_ItillUi_._l.llli|l,1 nc

.," '+

1964019637-026
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i M

where _ = _ (63)

T

j The correspondingdifferenceequation is

The e01utlonto Equation 64 is

i The maximum discrepancybetween the values of T calculatedfrom

'_ _I (62) aud (65) is _lependent on _ and the ratio h/_ as shown in Figures

i and 5. The error is given as a percentageof To. The time at which the

I'I maximum error occurs is

!_. t = h for h>m

t A v for h <

'I

, it st_'biz±,_yi

!'I It will be seen from Equation 65 that if the quantity

1 - (z - _)_ (66)
+_-

II becomes greater than _,_ityin magnitude,the temperatureT(._h)_£Ii tend

to infinityinstead of zero. This happens when

I b_> 2 l (67)

1964019637-027
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i
i i

and never for _"> 5' Thus values .of _ greater than _ alwaye lead to

• I stab'_::_lutions. It is to be noted that the choices of _ = O_ i and i

I lea_ito the methods of Euler, Crank and Nicholson, and Laasonen,
respectively, (2)

|
In the case of a Joining equation which does not contain a

term in _, the integration procedure followed still converts the equation

l into a difference equation. If the Joining equation is of the form

i as in Equation 35, for example_ the numerically integrated equation is

This has the solution

!
If _Q(O) is not e_:_ctlyzeroI or rounding error creeps in at some stage_

I the quantity _Q(nh) will tend to imfinity unless _ > I= _. In order to secure,

damping of AQ, the integration parameter is always chosen to be greater

l than one half.

i I Selection of the Integration Parameter

|
In order to simplify the discussion of problems involving many

! ¢zonee_ we assume the terms in can be linearized. Then the entire set

!

1964019637-030
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I
of differential equations (57) can 'be written in matrix notation as

i
dT

+ M_.. --P - _ (70)
'l

i where C is a matrix of co_iductances,includir_ radiative conduetances

_' 'rI T is __vector whose elements are the mean temperatu_'es

i M is a diagonal matrix of the thermal masses
P is a vector whose elements are the power inputs

I R is a vector of the radiation powers which are the constant

terms obtained in the linearization process.

i The solution to Equation 70 is

I where F is a matrix of constants depending on the initial conditions
-t/_k

E is a vector whose components are e

I G is a vector _epresenting the particular'inte_al

I _k is a time constant.
The time constants _k are found by setting the determinant of the matri_

0 - T M equal to zero

iIc-_MI--o. (_)
!

The finite difference equation corresponding to Equation 70 is

I _t+h

: hO[(l-a) _(t) �_(t�h)]+M[_Ct+h)-_(t)3--.[ Pdt-

!| "t (73)

'iK

c
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!
The solution to Equation 73 is

I
!

where F is 'the same matrix introduce_din Equation 71

_ B is a vector with component_ (_k)n '

H is a vector rep_esenting the particular sum.

I
The q_ntities _k are fo1._ndby solving the equation

I
' lo - _(i i. _,+__7 .l-- o C75)

I
i Comparison of Equations 75 _d 7_ sho_s that

I _=7".....% _,_.,,,,,,,_+o_k) (76)

| or h

I ..... h ' (77)

|
If the quantities _k vary over a wide range, then it may be seen fr_

I Figure 4 that "a value of _ of about 0.87 minimizes the maximum percentage
-nh/_k

discrepancy between e and (_k)n over all values of _. If the

I quantities _ vary over a small range_ however, a smaller value of _ gives

the minimum error. Figure 6 shows the optimum value of _ a5 a function of

h

I the maxlmum _kk.

'|

|

I _.M,r _l.lll.ml,.3,:t-.
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i_ Selection of the Time Increment

_ Yt is show_._in Figure 4 that the errol_ introduced by theh
_, quadrature in tim_ is reduced by _aking _6s_ll. However_ the time inare-

i _ ment h must not be _de too small becaus_ if a small err'or_ is maae at

:_ oach step in solving the difference equations for T(t + h)_ this error may

i _ be highly _ua_nified. To show this mo,_tsimply we revert to the case of a

:,,__ single l_mped mass. After we introduce the error _, Equation 65 becomes

T.(h)=_o_+ _ _

,_(2_)= _o_ + (1 + _)_ (78)

C

J

, We now _bstltute for _ fro_ Equation 66 and f_tnd

•,: _(_) = T _n + _", o- (_ + _)_ (79)

.g
It is seen from Equation 7_ that _ correlated error will be magnified by

_ the factor (_" h is small, A generalization of,_.+ C_)which _ll be large if ¥

_k
the _,.vgumentshows 5hat magnification factors (_ + _) occur in multlzone

problem_,
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;i
SO_ SIMPLE EXAMPLES

j Bar Losing Heat
i

I As a first example to illustratethe applicationof the method

of zones to a steady state problem, we consider the case of a bar losing

I heat along its length at a rate determinedby a heat transfer coefficient

i H. The ends of the bar are held at fixed temperaturesof 0° and T1. By
the method of zones the heat balance equation,as in Equation 38, is

|
T (12% - 6T1) + pI-I_,_= 0 (80)

,I
where A is the cross sectionalarea of the bar

I _ is the length of the bar

p is the perimeter of the bar.

|
Equation 80 may be solved immediatelyto give

I _ = (81)• 6K.A_1

m 12KA + pH$2

I
' To comparethis result with the exact result and the result obtainedby

ii the nodal method_ it is desirableto calculatetilecenter temperatureT .c

Since the temperatureof the zone is assumed to be parabolic,the center

il 'temperatureis given by 'theexpression

6%- 24-
o _ 48._4(_)2 T1 (82)

where

_l._thuta._Jttl_Slnc.
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I
The exact result :Ls

| slnh2-E

_c slnh__l (84)"
!

By the nodal method the equation for the center temperature is

I
2KA + _ + p_T c o (85)T _c (_c"TI) =

!
whence

i T - 2 T (86)

c 4+ (__)2

!
Some numerical results for comparison are given in Table I. One sees that

I the method of zones gives quite good results when _ is two or less, and

I TABLE I

| _c/_l
Method of I_odal

I _/5 Exact Zones Method

I i O.436 O.443 O.400

2 O.324 o.312 o.250

I 3 o.213 O.178 O.154

|
i t)mt the error of the nodal method is about five times that of the methodof zones in this range.

!
!
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Triangular Tube in Sunlight

Figure 7 shows a cross section of a long triangular tube in

sunlight. We will set up the zone heat balance equations for three zones,

1 numbered 2, 4_ and 6 in the diagram, and the Joining equations for the

odges, n'ombe_ed l, 3, and 5, in order to illustrate the application of

I the method to a multizone problem. We consider a unit length of the tube

which is taken to be black both inside and out in the infrared.

4

The following equations describe the system:

_I K_6 " 2T5)+ cE_2B_2(6T2 " 4TI " 2T3) = O (87)i--_"(6T6 - 4T1 . .

l
K25_ (12T2 " 6TI " 6T3) + 2J2 [_Te4 " _26 _ T64 " _24 _ T44J2

I %
"_ _2s cose2 + M_--_= o (88)

!

I _2 (%. 4_3.2_) K4%+_ (6_4-4_3-2_)=o (89)

i
K46_

!_I --_4 (12T4" 6T3 " 6T5)+ 2_4 _ T44 - _24 _ T24 " _ _ T64

dT4
I - _4_ s cose4+ M_ -_ = o (90)

I_li K464 K6_6

' _'-'_(6T4" 4T5 " 2TS)+ V (6T6" 4T5 " '_TI)= 0 (91)

'I
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!
K686 __ _ _46_7 (j_% " 6% ,. %) +_6 _ %4. _26 _. " _ _44

I dT6

+ M6 -_ -- o (92)

In these equations

I 8i is the thickness of zone i

Ki is the conductivity of zone i

I _i is the width of zone i

f _iJ is the view area per unit length between zones i and j

_i is solar absorptivity of zone i

I s is the solar constant

ei is the angle of incidence of the sunlight on zone i

I Mi is thermal mass of zone i

i T23 T4, and T6 are the mean temperatures of zones 2, 4, and 6,
respectively

I T1, T3, and T5 are the temperatures of the vertices of the

triangles as shown in Figure 7

I
Equations 87, 89, and 91 are the Joining equationsj while Equations 88,

I 903 and 92 are the zone heat balance equations. It will be obse1_ed that

I six equations in six unknowns are produced so that the problem is properly
defined and soluble if the temperatures T2, T4, and T6 are given initially.

i The initial values of temperatures Tl_ T3, and T5 are found from Equations
87, 89, and 91 solved simultaneously. The six equations may now be Inte-

I grated numerically (without linearlzation of Ti4) as described earlier.

I
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i
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I FIGURE 7. CROSS SECTION OF A TRIANGULAR TUBE IN bWJNLIGHT
" SHOWING NUMBERING OF FACES AND EDGES.
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i Cooling of a Slab

|
• Consider an infinite slab of thickness _ thermally insulated

,I over one face (at x = O) and with the temperature of the other face (at

x = _) held at zero degrees. The initial temperature of the slab is

taken to be Ti. 'i,_eshall derive the solution of this trmusient problem

i by the method of zones using only one zone and compare this result with
the exact answer.

I
- To do the problem by the method of zones, let T be the temper-

i oature of the boundary at x = 0 and T be the mean temperature of the slab.m

i Then the adiabatic boundary condition is expressed by the equation
}

- ...

i The overall heat balance equation is ,_ .,._

I K (12T - 6T ) + Cp_ - ,, - (94)
]" m o ti_/_ -

i In order to investigate the effect of the use of a single zone on the
transient behavior of the temperature, _e e'liminateT and integrate too

i obtain 3at

% = e (95)

i where
K 2 -i

K = _ , cm sec .

I
I
I _ _.hu__._ttd,,_n_.

_r _,_, ,
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The exact answer for the temperature distribution is

' I . (2n + 1)2_flt

4 co _ (2n + l)wx 4_2

= _0 cos.._-_--_.- e (96)
T(x,t) _ Ti 2n + i 2_

| n

"_ ! The mean temperature i_

! . (2n + l)2WR_t

• Tm = Ti Z i e (97)

n=o(2n+ l)2

I _igure 8 shows plots of the exact and approximate values of m as functions
6T _i

I of _t/_2. The difference, T-_'mbetween the two functions is shown in

Figure 9. It will be noted that the error is less than about 2% of Ti for

i values of _ greater than 0.3. The large error at the beginning, approxi-

mately ll% of Ti, is due to the fact that in the initial stages of the

I transient the temperature distribution is very far from parabolic. In

I order to,obtain_zaccurate results in the early stage, two or more zones
should be used.

,,,,, CRITERIA FOR CHOICE OF ZONE SIZE

, i_ After the heat bal_mce equations have been written one still

_ ' enjoys freedom of choice of the time interval and the integration param-

i"} eter. However, no such freedom remains in the choice of the zone sizes.

I If the zones are made too large, excessive error in the temperature dis-

;,i tribution will result. On the other hand, if the zones are too small,

"/, excessive labor is required to set up and solve the problem. Therefore
i

_':1
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!_ FIGURE 9, PLOT OF THE DIFFERENCE OF TEE TWO GRAPHS OF FIGURE 8.

I

i

1!
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it is vital to develop criteria which permit one to choose zones which

are of the _mximum size consistent %,iththe tolerable error.

l

: The.principle used to derive these criteria is that the zone

i size must be chosen so that the pare_bolicapproximation is valid at all

times of interest. An immediate consequence of this prlndipleis that if

I the temperature distribution in a region is strongly S-shaped_ the region

R must be broken into at least t_o zones. For example, if a cylindrical

|
satellite is rotating about its axis in sunllg_ht_a mlnLmum of three_ and

• I preferably four, azimuthal zones must be used because of the a_prox_mate!v

slnusoidal distribution of tempere,ture.

i
I _ny exact solutior_.Sto heat transfer problems consist of a

series of exponentials and trigonometric functions. In order to obtain
i

:i,J the maximum size of a zone3 we calculate the interval over which the ex-

ponentlal or trigonometric function is well represented by a parabola.

""I Fox'example, consider the _ase of a semS.-infiniterod extending from

: i x = 0 to x = co and losing heat along its length, Suppose that the tem-
perature at the orlgin is mod.ulated slnus01dally with an amplltude To and

l a_lar frequency _. _ne d!.fferentlal equation is

82-_T' �h_C_A -_- 0 (98)

'" , 7, , '

J where . 'K is the condbctivity

A 'i'sthe cross,_sectionalarea

11 _ _ h.is the heat transfer coefficient

1964019637-044
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I.

I
p is the perimeter

'"_ CP is the heat capacity per _it volume
J

_,_ T is the temperature relative to ambient.

When stea_y state is reached the temperature is

X

_' T=Toe -

J
where

_ 8 = .A/(_) 2 - (ZOO): 2+i. _-_+h-P'z,A

x : 2_ /-,. _ (zoz)

K
_=CP

_r

_e quantity 8 may be called the temperature decay length an,_

_, ,,.,I,_ k is the wavele_Eth of the dampe,dtemperature wave in the rod, The zon_

1

size may be of the c,rder of 8 to 3_ or _, whichever is sma].l(;_.It w_.ll

be noted t_hat8 is !e_s thmu X/4.

;1
_,

.: For a_= O, the decay l_:,_%_h.8al_ays governs (becauce k _:co )

an_lis given by
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!
, In case of a high frequency modulation

!
)_= 2_ = a_ (los)"

|
The zone size" should therefore be chosen to be about _ that is, a

4 _ quarter L_avelength0

Another cri%erion is obtained by examination of Fig_'me9_ which

shows the error in a transient problem. For an error in the mean tempera-
ture of less 'thanabout 2% of the total temperature swing, sufficient time

must elapse so that

_>_°3__ (_o4)

where _ is the size of the zone. In other words, if to Is the earliest

time of interest, the zone size _ should be chosen so that

!
•- 1.8 _o (lO5)

: i An additioncl type of restriction on zone size has already been
given in Inequality ]5. This is the condition that

' I ovar radlatJng surfaces. Condition 15 can be put in the simple form

T

|
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J

NUMERICAL SOLUTION OF THE DIFFERENCE Eq

' _ While the modified Gauss-Seidel procedure used for solving the

differe_,ceEquations 60 is well known 3 it will be briefly described here

for the sake of completeness and also because the method has been found

to work well in practice on a large number of complicated examples.

: l In order to calculate Ti(t + h), iteration with an acceleration

factor is used. Th_ values of Ti(t) are used as a starting approximation

• I to Ti(t + h). New approximations are obtained successively by solving

the equations

!

i foi + fli T_i(t+ h) + f4i(i_(t + h)) b : 0 (107)

' where foi = h 7. (1 ) + h Z (_Tj(t + h)

I J cij - _)Tj(t j/icij

+ h Z (i - G)oTj4(t) + h Z Aij(_ _ Tj4(t + h)J Aij J_i

,. _t+h

I "Jt Pi dt -M i Ti(t ) (i08)

-| o
fli = h vii _ + Mi (109)

f4i = h Aii c__ (llO)

_ When the root T_(t + h) has been found, the old value of Ti(t + h) is

'__ 'i replaced by

!

Ii
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!
| _i(t+h)+_[T#t•h)_Ti(t+h_ (nl)

I and the next equation is set up and solved. The acceleration factor 7 is
generally chosen to be about 1.6 for optimum results°

!
Convergence of the method is general]_ good unless two or more

i temperatures are very tightly coupled to each other and weakly co_led to

i surro_iding temperatures. This situation is to be avoided by replacing
two such relatively tightly coupled temperatures by a single temperature°

!
I CHECKING PROCEDURES

i It is a laborious and tedious task to set uP all of the

i numerical coefficients used in the equations describing the heat balance

and Joining conditions of many zones in a co_plicated problem, so that

i errors frequently creep in. Many of these e_ors can be detected by

l checks based on the principles of reciprocity _ud the conservation of
energy. In general, the rows and columns of the matrices of conductances

i and view areas should add up to zero. This will be so if the equations

are written in full exactly as prescribed by the method of zones with all

i diagonal elements positive. While it would make no difference to the

final answer if varloas equations _ere multiplied'by different constants,

I such msnlpulatlon would make it impossible to ch_ck the column sums.

i Certain c_nplications generally do arise, howeve_>o In the first place,
it freguently happens that certain areas of the system are radiating to

!
!
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empty space, so that the view area for the radiation from empty space is

I omitted.

When any part of the system (e.g., a boundary) has a fixed, pre-

i assigned temperature T, the equation for this temperature is simply

I = 0_t

It will be seen that the conductances and view areas of the rest of the

_ system to this part are omitted, but not conversely, so that non-zero
column sums will occur. As long as all the omitted conductances and areas

are known_ however, the non-zero sums can be checked.

Non-zero column sums also arise when circular zones, subdivided

azimuthally# are present because the condition on the center temperature

1 is the regularity condition and not a flux condition. Here again, however,

I the amount of the coltunn sum can be predicted and thus the column can still
I

be checked.

Another check that can be made is on the overall heat eneygy

balance of the entire system, Five terms enter the energy" balance equation

t t _t

_Mi Ti(t)= EMi Ti(O)+_'_oi i Pi dt" EAi_oi Ti4dt" rCi_oi Ti dt

' (n3)

_r
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I where Z Mi Ti(t) is the energy stored at time t

I z Mi Ti(O ) is the initial stored energy
i

I _ dt is the receivedZ t
Pi energy

iJo
I

t Ti4

_.Ai dt is the net energy lost by radiation
i

P

Z Ci# Ti dt is the net energy lost by conduction,Jo

I In Equation i13 the quantities Ai and Ci are simply the areas and conduc-

tances omitted in the matrices of coefficients. It is to be noted that

; I Ti4the iate_ratiors of Ti and should be carried out with the same inte-

I gration pare_neter_ usod for the integratio_ of the individual heat
balance equations. This check can be applied at any time t after the

o, _ start of the calculation.

I ACKNOWLEDGMENTS

The main ideas in this work were developed under Purchase

_ 0rd(;z"No. 95406 with Baird-Atomic, Inc. We particularly wish to acknowl-

e(_,_the encoaragement of _, Robert Shaw of that organization.

!
We _!_o thank Dr, Leslie G. Peck for his constructive criticism

'i a in the early pha_es of the development of the method.

!
I

1964019637-050



!

47

Messrs. Frank Gabron and Albert Rawdon have provided constant

pract! ,ssistance in the testing of the theory in com_llcated situations.

Their work has frequently pointed the way to the improvement of the method

of zones.

Mrs. Carol Sox is to be thanked for the derivation of the com-.

I plicated formulas required in calculating the azimuthal heat flux in the

i sector of an annular cylinder, and for other contributions in the

development of the theory.

i
Finally it is a pleasure to acknowledge the support of the

Jet Propulsion Laboratory in the preparation of this account of the method

of zol_es.

_ References

i
W. H. McAdam&, Heat Transmission (McGraw-Hill Book Company, Inc.,

New York, 194_).

2
R. D. Richtmyer Difference Methods for Initlal-Value Problems (Inter-

Science Publishers, Inc., New York; 1957).

l

1964019637-051




